First law Kepler's laws of planetary motion



figure 2: kepler s first law placing sun @ focus of elliptical orbit



figure 4: heliocentric coordinate system (r, θ) ellipse. shown are: semi-major axis a, semi-minor axis b , semi-latus rectum p; center of ellipse , 2 foci marked large dots. θ = 0°, r = rmin , θ = 180°, r = rmax.


mathematically, ellipse can represented formula:







r
=


p

1
+
ε

cos

θ



,


{\displaystyle r={\frac {p}{1+\varepsilon \,\cos \theta }},}



where



p


{\displaystyle p}

semi-latus rectum, ε eccentricity of ellipse, r distance sun planet, , θ angle planet s current position closest approach, seen sun. (r, θ) polar coordinates.


for ellipse 0 < ε < 1 ; in limiting case ε = 0, orbit circle sun @ centre (i.e. there 0 eccentricity).


at θ = 0°, perihelion, distance minimum








r

min


=


p

1
+
ε





{\displaystyle r_{\min }={\frac {p}{1+\varepsilon }}}



at θ = 90° , @ θ = 270° distance equal



p


{\displaystyle p}

.


at θ = 180°, aphelion, distance maximum (by definition, aphelion – invariably – perihelion plus 180°)








r

max


=


p

1

ε





{\displaystyle r_{\max }={\frac {p}{1-\varepsilon }}}



the semi-major axis arithmetic mean between rmin , rmax:









r

max



a
=
a


r

min




{\displaystyle \,r_{\max }-a=a-r_{\min }}








a
=


p

1


ε

2







{\displaystyle a={\frac {p}{1-\varepsilon ^{2}}}}



the semi-minor axis b geometric mean between rmin , rmax:










r

max


b


=


b

r

min






{\displaystyle {\frac {r_{\max }}{b}}={\frac {b}{r_{\min }}}}








b
=


p

1


ε

2







{\displaystyle b={\frac {p}{\sqrt {1-\varepsilon ^{2}}}}}



the semi-latus rectum p harmonic mean between rmin , rmax:









1

r

min







1
p


=


1
p





1

r

max






{\displaystyle {\frac {1}{r_{\min }}}-{\frac {1}{p}}={\frac {1}{p}}-{\frac {1}{r_{\max }}}}








p
a
=

r

max



r

min


=

b

2





{\displaystyle pa=r_{\max }r_{\min }=b^{2}\,}



the eccentricity ε coefficient of variation between rmin , rmax:







ε
=




r

max




r

min





r

max


+

r

min





.


{\displaystyle \varepsilon ={\frac {r_{\max }-r_{\min }}{r_{\max }+r_{\min }}}.}



the area of ellipse is







a
=
π
a
b

.


{\displaystyle a=\pi ab\,.}



the special case of circle ε = 0, resulting in r = p = rmin = rmax = = b , = πr.







Comments

Popular posts from this blog

The battle for tallest status IDS Center

Discography Butterfingers (Malaysian band)

Timeline Korean DMZ Conflict (1966–1969)