Acceleration vector Kepler's laws of planetary motion



from heliocentric point of view consider vector planet




r

=
r




r

^





{\displaystyle \mathbf {r} =r{\hat {\mathbf {r} }}}





r


{\displaystyle r}

distance planet ,







r

^





{\displaystyle {\hat {\mathbf {r} }}}

unit vector pointing towards planet.










d




r

^





d
t



=






r

^


˙



=



θ
˙






θ
^



,




d



θ
^





d
t



=





θ
^


˙



=




θ
˙







r

^





{\displaystyle {\frac {d{\hat {\mathbf {r} }}}{dt}}={\dot {\hat {\mathbf {r} }}}={\dot {\theta }}{\hat {\boldsymbol {\theta }}},\qquad {\frac {d{\hat {\boldsymbol {\theta }}}}{dt}}={\dot {\hat {\boldsymbol {\theta }}}}=-{\dot {\theta }}{\hat {\mathbf {r} }}}



where






θ
^





{\displaystyle {\hat {\boldsymbol {\theta }}}}

unit vector direction 90 degrees counterclockwise of







r

^





{\displaystyle {\hat {\mathbf {r} }}}

, ,



θ


{\displaystyle \theta }

polar angle, , dot on top of variable signifies differentiation respect time.


differentiate position vector twice obtain velocity vector , acceleration vector:











r

˙



=



r
˙







r

^



+
r






r

^


˙



=



r
˙







r

^



+
r



θ
˙






θ
^



,


{\displaystyle {\dot {\mathbf {r} }}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\hat {\mathbf {r} }}}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\theta }}{\hat {\boldsymbol {\theta }}},}










r

¨



=
(



r
¨







r

^



+



r
˙









r

^


˙



)
+
(



r
˙






θ
˙






θ
^



+
r



θ
¨






θ
^



+
r



θ
˙








θ
^


˙



)
=
(



r
¨




r




θ
˙




2


)




r

^



+
(
r



θ
¨



+
2



r
˙






θ
˙



)



θ
^



.


{\displaystyle {\ddot {\mathbf {r} }}=({\ddot {r}}{\hat {\mathbf {r} }}+{\dot {r}}{\dot {\hat {\mathbf {r} }}})+({\dot {r}}{\dot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\ddot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\dot {\theta }}{\dot {\hat {\boldsymbol {\theta }}}})=({\ddot {r}}-r{\dot {\theta }}^{2}){\hat {\mathbf {r} }}+(r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}){\hat {\boldsymbol {\theta }}}.}



so











r

¨



=

a

r





r
^



+

a

θ





θ
^





{\displaystyle {\ddot {\mathbf {r} }}=a_{r}{\hat {\boldsymbol {r}}}+a_{\theta }{\hat {\boldsymbol {\theta }}}}



where radial acceleration is








a

r


=



r
¨




r




θ
˙




2




{\displaystyle a_{r}={\ddot {r}}-r{\dot {\theta }}^{2}}



and transversal acceleration is








a

θ


=
r



θ
¨



+
2



r
˙






θ
˙



.


{\displaystyle a_{\theta }=r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}.}








Comments

Popular posts from this blog

The battle for tallest status IDS Center

Discography Butterfingers (Malaysian band)

Timeline Korean DMZ Conflict (1966–1969)